Water Centric Sustainable Communities
Planning, Retrofitting, and Building the Next Urban Environment
Gebonden Engels 2010 9780470476086Samenvatting
The current literature compartmentalizes the complex issue of water and wastewater into its discrete components; technology, planning, policy, construction, economics, etc. Considered from the perspective of sustainability, however, water in the urban environment must be approached as a single resource that can be continuously reused and recycled. This book will be the first to capture all of the current work on this idea in a single, integrated, plan for designing the water–centric cities of the future. From new construction to the retrofitting of existing systems, this book presents the case for a new urban relationship to water, one with a more sustainable connection to the environment and the hydrological cycle. Through case studies of successfully planned and built systems around the world, the book will educate the reader about the need for a new approach to urban water management, and make the case that these changes are not only possible but imperative.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>I HISTORIC PARADIGMS OF URBAN WATERSTORMWATER WASTEWATER MANAGEMENT AND DRIVERS FOR CHANGE 1</p>
<p>I.1 Introduction 1</p>
<p>I.2 Historic Paradigms: From Ancient Cities to the 20th Century 5</p>
<p>I.2.1 First Paradigm 8</p>
<p>I.2.2 Second Paradigm 9</p>
<p>I.2.3 Third Paradigm 15</p>
<p>I.2.4 Fourth Paradigm 25</p>
<p>I.2.5 The Impact of Automobile Use 32</p>
<p>I.2.6 Urban Sprawl 38</p>
<p>I.2.7 The Rise of New Great Powers Competing for Resources 40</p>
<p>I.3 Drivers for Change towards Sustainability 42</p>
<p>I.3.1 Population Increases and Pressures 44</p>
<p>I.3.2 Water Scarcity Problems and Flooding Challenges of Large Cities 49</p>
<p>I.3.3 Greenhouse Emissions and Global Warming Effects 51</p>
<p>I.3.4 Aging Infrastructure and the Need to Rebuild and Retrofit 59</p>
<p>I.3.5 The Impossibility of Maintaining the Status Quo and Business as Usual 60</p>
<p>I.4 The 21st Century and Beyond 65</p>
<p>References 68</p>
<p>II URBAN SUSTAINABILITY CONCEPTS 72</p>
<p>II.1 The Vision of Sustainability 72</p>
<p>II.2 The Sustainability Concept and Definitions 73</p>
<p>II.2.1 A New (Fifth) Paradigm Is Needed 73</p>
<p>II.2.2 Definition of Pollution 76</p>
<p>II.2.3 Sustainability Definitions 80</p>
<p>II.2.4 Economic versus Resources Preservation Sustainability 82</p>
<p>II.2.5 Sustainability Components 85</p>
<p>II.2.6 The Environment and Ecology 87</p>
<p>II.2.7 Living within the Limits in the Urban Landscape 90</p>
<p>II.2.8 The Economy 94</p>
<p>II.3 Towards the Fifth Paradigm of Sustainability 97</p>
<p>II.3.1 Emerging Sustainable Urban Water Stormwater Used Water Systems 99</p>
<p>II.3.2 Triple Bottom Line Life Cycle Assessment (TBL LCA) 104</p>
<p>II.3.3 Water Reclamation and Reuse 106</p>
<p>II.3.4 Restoring Urban Streams 108</p>
<p>II.3.5 Stormwater Pollution and Flood Abatement 110</p>
<p>II.3.6 Urban Landscape 113</p>
<p>II.4 Cities of the Future Water Centric Ecocities 114</p>
<p>II.4.1 Drainage and Water Management 114</p>
<p>II.4.2 Microscale Measures and Macroscale Watershed Goals 116</p>
<p>II.4.3 Integrated Resource Management Clusters Ecoblocks of the Cities of the Future 120</p>
<p>II.4.4 Interconnectivity of Clusters Spatial Integration 123</p>
<p>II.5 Ecocity Ecovillage Concepts 124</p>
<p>References 129</p>
<p>III PLANNING AND DESIGN FOR SUSTAINABLE AND RESILIENT CITIES: THEORIES, STRATEGIES, AND BEST PRACTICES FOR GREEN INFRASTRUCTURE 135</p>
<p>III.1 Introduction 135</p>
<p>III.1.1 Achieving Sustainability 135</p>
<p>III.1.2 Sustainability through Urban Planning and Design 137</p>
<p>III.2 Ecosystem Services 138</p>
<p>III.2.1 Concepts 138</p>
<p>III.2.2 The Non–Equilibrium Paradigm 141</p>
<p>III.3 Planning for Resilient and Sustainable Cities 143</p>
<p>III.3.1 Ecosystem Service Goals and Assessments 143</p>
<p>III.3.2 Resilience Strategies 144</p>
<p>III.3.3 Scenario Planning 155</p>
<p>III.3.4 Transdisciplinary Process 157</p>
<p>III.3.5 Adaptive Planning 157</p>
<p>III.4 Best Practices for Green Infrastructure 158</p>
<p>III.4.1 SEA Street Seattle 159</p>
<p>III.4.2 Westergasfabriek Park, Amsterdam 162</p>
<p>III.4.3 Staten Island Blue Belt, New York 162</p>
<p>III.4.4 Ecostaden (Ecocities): Augustenborg Neighborhood and Western Harbor, Malm¨o, Sweden 164</p>
<p>III.5 Discussion 170</p>
<p>References 171</p>
<p>IV STORMWATER POLLUTION ABATEMENT AND FLOOD CONTROL STORMWATER AS A RESOURCE 177</p>
<p>IV.1 Urban Stormwater A Problem or an Asset? 177</p>
<p>IV.1.1 Problems with Urban Stormwater 177</p>
<p>IV.1.2 Current Urban Drainage 182</p>
<p>IV.1.3 Urban Stormwater Is an Asset and a Resource 184</p>
<p>IV.1.4 Low Impact Development (LID) 186</p>
<p>IV.2 Best Management Practices to Control Urban Runoff for Reuse 189</p>
<p>IV.2.1 Soft Surface Approaches 190</p>
<p>IV.2.2 Ponds and Wetlands 201</p>
<p>IV.2.3 Winter Limitations on Stormwater Management and Use 212</p>
<p>IV.2.4 Hard Infrastructure 216</p>
<p>IV.2.5 ID Urban Drainage A Step to the Cities of the Future 218</p>
<p>References 222</p>
<p>V WATER DEMAND AND CONSERVATION 228</p>
<p>V.1 Water Use 228</p>
<p>V.1.1 Water on Earth 228</p>
<p>V.1.2 Water Use Fundamentals 232</p>
<p>V.1.3 Municipal Water Use in the U.S. and Worldwide 235</p>
<p>V.1.4 Components of Municipal Water Use 239</p>
<p>V.1.5 Virtual Water 240</p>
<p>V.2 Water Conservation 241</p>
<p>V.2.1 Definition of Water Conservation 241</p>
<p>V.2.2 Residential Water Use 241</p>
<p>V.2.3 Commercial and Public Water Use and Conservation 249</p>
<p>V.2.4 Leaks and Other Losses 251</p>
<p>V.3 Substitute and Supplemental Water Sources 252</p>
<p>V.3.1 Rainwater Harvesting (RWH) 252</p>
<p>V.3.2 Gray Water Reclamation and Reuse as a Source of New Water 256</p>
<p>V.3.3 Desalination of Seawater and Brackish Water 260</p>
<p>V.3.4 Urban Stormwater and Other Freshwater Flows as Sources of Water 266</p>
<p>References 268</p>
<p>VI WATER RECLAMATION AND REUSE 272</p>
<p>VI.1 Introduction 272</p>
<p>VI.2 Water Reclamation and Reuse 274</p>
<p>VI.2.1 The Concept 274</p>
<p>VI.2.2 Reclaiming Rainwater and Stormwater 279</p>
<p>VI.2.3 Water–Sewage–Water Cycle Unintended Reuse 280</p>
<p>VI.2.4 Centralized versus Decentralized Reclamation 281</p>
<p>VI.2.5 Cluster Water Reclamation Units 282</p>
<p>VI.3 Water Quality Goals and Limits for Selecting Technologies 286</p>
<p>VI.3.1 Concepts 286</p>
<p>VI.3.2 Landscape and Agricultural Irrigation 289</p>
<p>VI.3.3 Urban Uses Other Than Irrigation and Potable Water Supply 293</p>
<p>VI.3.4 Potable Reuse 297</p>
<p>VI.3.5 Groundwater Recharge 300</p>
<p>VI.3.6 Integrated Reclamation and Reuse Singapore 304</p>
<p>References 308</p>
<p>VII TREATMENT AND RESOURCE RECOVERY UNIT PROCESSES 311</p>
<p>VII.1 Brief Description of Traditional Water and Resource Reclamation Technologies 311</p>
<p>VII.1.1 Basic Requirements 311</p>
<p>VII.1.2 Considering Source Separation 312</p>
<p>VII.1.3 Low–Energy Secondary Treatment 315</p>
<p>VII.1.4 New Developments in Biological Treatment 324</p>
<p>VII.2 Sludge Handling and Resource Recovery 329</p>
<p>VII.2.1 Types of Solids Produced in the Water Reclamation Process 331</p>
<p>VII.2.2 A New Look at Residual Solids (Sludge) as a Resource 334</p>
<p>VII.3 Nutrient Recovery 336</p>
<p>VII.4 Membrane Filtration and Reverse Osmosis 339</p>
<p>VII.5 Disinfection 340</p>
<p>VII.6 Energy and GHG Emission Issues in Water Reclamation Plants 346</p>
<p>VII.7 Evaluation and Selection of Decentralized Water Reclamation Technologies 348</p>
<p>VII.7.1 Closed Cycle Water Reclamation 348</p>
<p>References 354</p>
<p>VIII ENERGY AND URBAN WATER SYSTEMS TOWARDS NET ZERO CARBON FOOTPRINT 358</p>
<p>VIII.1 Interconnection of Water and Energy 358</p>
<p>VIII.1.1 Use of Water and Disposal of Used Water Require Energy and Emit GHGs 358</p>
<p>VIII.1.2 Greenhouse Gas Emissions from Urban Areas 360</p>
<p>VIII.1.3 The Water–Energy Nexus on the Regional and Cluster Scale 362</p>
<p>VIII.1.4 Net Zero Carbon Footprint Goal for High–Performance Buildings and Developments 365</p>
<p>VIII.2 Energy Conservation in Buildings and Ecoblocks 71</p>
<p>VIII.2.1 Energy Considerations Related to Water 371</p>
<p>VIII.2.2 Heat Recovery from Used Water 379</p>
<p>VIII.3 Energy from Renewable Sources 380</p>
<p>VIII.3.1 Solar Energy 380</p>
<p>VIII.3.2 Wind Power 387</p>
<p>VIII.4 Energy from Used Water and Waste Organic Solids 392</p>
<p>VIII.4.1 Fundamentals 392</p>
<p>VIII.4.2 Biogas Production, Composition, and Energy Content 394</p>
<p>VIII.4.3 Small and Medium Biogas Production Operations 397</p>
<p>VIII.4.4 Anaerobic Upflow Reactor 398</p>
<p>VIII.5 Direct Electric Energy Production from Biogas and Used Water 399</p>
<p>VIII.5.1 Hydrogen Fuel Cells 400</p>
<p>VIII.5.2 Microbial Fuel Cells (MFC) 403</p>
<p>VIII.5.3 Harnessing the Hydraulic Energy of Water Used Water Systems 406</p>
<p>VIII.6 Summary and a Look into the Future 408</p>
<p>VIII.6.1 A New Look at the Used Water Reclamation Processes 408</p>
<p>VIII.6.2 Integrated Resource Recovery Facilities 411</p>
<p>VIII.7 Overall Energy Outlook Anticipating the Future 416</p>
<p>VIII.7.1 A Look into the Future 20 or More Years Ahead 416</p>
<p>VIII.7.2 Is Storage a Problem? 421</p>
<p>References 422</p>
<p>IX RESTORING URBAN STREAMS 427</p>
<p>IX.1 Introduction 427</p>
<p>IX.1.1 Rediscovering Urban Streams 427</p>
<p>IX.1.2 Definitions 437</p>
<p>IX.2 Adverse Impacts of Urbanization to Be Remedied 438</p>
<p>IX.2.1 Types of Pollution 438</p>
<p>IX.2.2 Determining Main Impact Stressors to Be Fixed by Restoration 443</p>
<p>IX.2.3 Effluent Dominated and Effluent Dependent Urban Water Bodies 447</p>
<p>IX.3 Water Body Restoration in the Context of Future Water Centric (Eco) Cities 453</p>
<p>IX.3.1 Goals 453</p>
<p>IX.3.2 Regionalized versus Cluster–Based Distributed Systems 455</p>
<p>IX.3.3 New Developments and Retrofitting Older Cities 457</p>
<p>IX.4 Summary and Conclusions 476</p>
<p>References 479</p>
<p>X PLANNING AND MANAGEMENT OF SUSTAINABLE FUTURE COMMUNITIES 482</p>
<p>X.1 Integrated Planning and Management 482</p>
<p>X.1.1 Introduction 482</p>
<p>X.1.2 Footprints 484</p>
<p>X.2 Urban Planning 487</p>
<p>X.2.1 Ecocity Parameters and Demographics Population Density Matters 488</p>
<p>X.3 Integrated Resources Management (IRM) 493</p>
<p>X.3.1 Sustainability 493</p>
<p>X.4 Clusters and Ecoblocks Distributed Systems 497</p>
<p>X.4.1 The Need to Decentralize Urban WaterStormwaterUsed Water Management 497</p>
<p>X.4.2 Distribution of Resource Recovery, Reclamation and Management Tasks 499</p>
<p>X.4.3 Cluster Creation and Size 503</p>
<p>X.4.4 Types of WaterEnergy Reclamations and Creation of a Sustainable Urban Area 505</p>
<p>X.5 System Analysis and Modeling of Sustainable Cities 514</p>
<p>X.5.1 Complexity of the System and Modeling 514</p>
<p>X.5.2 Triple Bottom Line (TBL) Assessment 518</p>
<p>X.6 Institutions 525</p>
<p>X.6.1 Institutions for Integrated Resource Management 526</p>
<p>X.6.2 Enhanced Private Sector 532</p>
<p>X.6.3 Achieving Multibenefit System Objectives 533</p>
<p>References 535</p>
<p>XI ECOCITIES: EVALUATION AND SYNTHESIS 539</p>
<p>XI.1 Introduction 539</p>
<p>XI.2 Case Studies 542</p>
<p>XI.2.1 Hammarby Sjöstad, Sweden 542</p>
<p>XI.2.2 Dongtan, China 549</p>
<p>XI.2.3 Qingdao (China) Ecoblock and Ecocity 556</p>
<p>XI.2.4 Tianjin (China) 560</p>
<p>XI.2.5 Masdar (UAE) 566</p>
<p>XI.2.6 Treasure Island (California, U.S.) 573</p>
<p>XI.2.7 Sonoma Mountain Village (California, U.S.) 579</p>
<p>XI.2.8 Dockside Green 585</p>
<p>XI.3 Brief Summary 588</p>
<p>References 590</p>
<p>APPENDIX 595</p>
<p>INDEX 597</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan