Neutronic Analysis For Nuclear Reactor Systems

Paperback Engels 2018 9783319827063
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book covers the entire spectrum of the science and technology of nuclear reactor systems, from underlying physics, to next generation system applications and beyond. Beginning with neutron physics background and modeling of transport and diffusion, this self-contained learning tool progresses step-by-step to discussions of reactor kinetics, dynamics, and stability that will be invaluable to anyone with a college-level mathematics background wishing to develop an understanding of nuclear power. From fuels and reactions to full systems and plants, the author provides a clear picture of how nuclear energy works, how it can be optimized for safety and efficiency, and why it is important to the future.

Specificaties

ISBN13:9783319827063
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<div>Table of Contents</div><div>About the Authors </div><div>Preface</div><div>Acknowledgment</div><div>Chapter One: Neutron Physics Background</div><div>1.0 Nuclei – Sizes, Composition, and Binding Energies</div><div>1.1 Decay of a Nucleus</div><div>1.2 Distribution of Nuclides and Nuclear Fission/Nuclear Fusion</div><div>1.3 Neutron-Nucleus Interaction</div><div>1.3.1 Nuclear Reactions Rates and Neutron Cross Sections</div><div>1.3.2 Effects of Temperature on Cross Section</div><div>1.3.3 Nuclear Cross Section Processing Codes</div><div>1.3.4 Energy Dependence of Neutron Cross Sections</div><div>1.3.5 Types of Interactions</div><div>1.4 Mean Free Path</div><div>1.5 Nuclear Cross Section and Neutron Flux Summary</div><div>1.6 Fission</div><div>1.7 Fission Spectra</div><div>1.8 The Nuclear Fuel</div><div>1.6.1 Fertile Material</div><div>1.9 Liquid Drop Model of a Nucleus</div><div>1.10 Summary of Fission Process</div><div>1.11 Reactor Power Calculation</div><div>1.12 Relationship between Neutron Flux and Reactor Power</div><div>1.13 References</div><div>1.14 Problems</div><div>Chapter Two: Modeling Neutron Transport and Interactions</div><div>2.0 Transport Equations</div><div>2.1 Reaction Rates</div><div>2.2 Reactor Power Calculation</div><div>2.3 Relationship between Neutron Flux and Reactor Power</div><div>2.4 Neutron Slowing Down and Thermalization</div><div>2.5 Macroscopic Slowing Down Power</div><div>2.6 Moderate Ratio</div><div>2.7 Integro-Differential Equation (Maxwell-Boltzmann Equation)</div><div>2.8 Integral Equation</div><div>2.9 Multigroup Diffusion Theory</div><div>2.10 The Multigroup Equations</div><div>2.11 Generating the Coefficients</div><div>2.12 Simplifications</div><div>2.13 Nuclear Criticality Concepts</div><div>2.14 Criticality Calculation</div><div>2.15 The Multiplication Factor and a Formal Calculation of Criticality</div><div>2.16 Fast Fission Factor Definition</div><div>2.17 Resonance Escape Probability</div><div>2.18 Group Collapsing<div>2.18.1 Multigroup Collapsing to One Group</div><div>2.18.2 Multigroup Collapsing to Two Group</div><div>2.18.3 Two Group Criticality</div><div>2.19 The Infinite Reactor</div><div>2.20 Finite Reactor</div><div>2.21 Time Dependence</div><div>2.22 Thermal Utilization Factor</div><div>2.23 References</div><div>2.24 Problems</div><div>Chapter Three: Spatial Effects in Modeling Neutron Diffusion – One Group Models</div><div>3.0 Nuclear Reactor Calculations</div><div>3.1.1 Neutron Spectrum</div><div>3.2 Control Rods in Reactors</div><div>3.2.1 Lattice Calculation Analysis</div><div>3.3 An Introduction to Neutron Transport Equation</div><div>3.4 Neutron Current Density Concept in General</div><div>3.5 Neutron Current Density and Fick’s Law</div><div>3.6 Problem Classification and Neutron Distribution</div><div>3.7 Neutron Slowing Down</div><div>3.8 Neutron Diffusion Concept</div><div>3.9 The One Group Model and One Dimensional Analysis</div><div>3.10.1 Boundary Conditions for the Steady-State Diffusion Equation</div><div>3.10.2 Boundary Conditions – Consistent and Approximate</div><div>3.10.3 An Approximate Methods for Solving the Diffusion Equation</div><div>3.10.4 The P1 Approximate Methods in Transport Theory</div><div>3.11 Further Analysis Methods for One Group</div><div>&lt;3.11.1 Slab Geometry</div><div>3.11.2 Cylindrical Geometry</div><div>3.11.3 Spherical Geometry</div><div>3.12 Eigenfunction Expansion Methods and Eigenvalue Equations</div><div>3.12.1 Eigenvalues and Eigenfunctions Problems</div><div>3.13 Multi-Dimensional Models and Boundary Conditions</div><div>3.13.1 The Unreflected Reactor Parallelepiped Core</div><div>3.13.2 The Minimum Volume of the Critical Parallelepiped</div><div>3.13.3 The Peak to Average Flux Ratio</div><div>3.13.4 The Finite Height Cylindrical Core</div><div>3.14 Relating k to the Criticality Condition</div><div>3.15 Analytical Solution for the Transient Case for Reactor</div><div>3.16 Criticality</div><div>3.17 Bare Critical Reactor 1-Group Model</div><div>3.18 Bare Critical Reactor 1-Group Model, Finite Geometries</div><div>3.19 Reflected Critical Reactors- 1-Group Model</div><div>3.20 Infinite Reflector Case</div><div>3.21 Criticality for General Bare Geometries</div><div>3.22 Reflected Reactor Geometries</div><div>3.23 Reactor Criticality Calculations</div><div>3.24 References</div><div>3.25 Problems</div><div>Chapter Four: Energy Effects in Modeling Neutron Diffusion – Two Group Models</div><div>4.0 One-Group Diffusion Theory</div><div>4.1 Two-Group Diffusion Theory</div><div>4.2 Few Group Analysis</div><div>4.2.1 2-Group Thermal Reactor Equations</div><div>4.2.2 2-Group Fast Reactor Equations</div><div>4.3 Transverse Buckling Approximation</div><div>4.4 Consistent Diffusion Theory Boundary Conditions</div><div>4.5 Derivation of the One-Dimensional Multi-Group PN Equations</div><div>4.6 Multi-Group Diffusion Equations - Solution Approach</div><div>4.6.1 Infinite Medium for Group Collapse</div><div>4.6.2 Zero-Dimensional Spectrum for Group Collapse</div><div>4.6.3 Group Collapsing</div><div>4.6.4 Group Collapse</div><div>4.7 References</div><div>4.8 Problems<div>Chapter Five: Numerical Methods in Modeling Neutron Diffusion</div><div>5.0 Introduction</div><div>5.1 Problem(s) Solved</div><div>5.1.1 Transport Equation</div><div>5.1.2 Angle Discretization</div><div>5.1.3 Energy Discretization</div><div>5.1.4 Spatial Discretization</div><div>5.1.5 Matrix Formulation</div><div>5.2 Solution Strategy</div><div>5.2.1 Types of Outer Iterations</div><div>5.2.2 Inhomogeneous Source (No Fission)</div><div>5.2.3 Inhomogeneous Source (With Fission)</div><div>5.2.4 Fission Eigenvalue Calculation</div><div>5.2.5 Eigenvalue Search Calculation</div><div>5.3 Middle Iterations</div><div>5.4 Inner Iterations</div><div>5.5 Upscatter Iterations</div><div>5.6 Inhomogeneous Sources</div><div>5.7 Background Concepts</div><div>5.7.1 Mixing Tables</div><div>5.7.2 Cross Section Collapsing</div><div>5.8 Input Description5.9 Output Description</div><div>5.10 References</div><div>5.11 Problems</div><div>Chapter Six: Slowing Down Theory</div><div>6.0 Neutron Elastic and Inelastic Scattering for Slowing Down</div><div>6.1 Derivation of the Energy and Transfer Cross Section</div><div>6.1.1 Elastic Scattering</div><div>6.1.2 Inelastic Scattering</div><div>6.2 Derivation of the Isotropic Flux in an Infinite Hydrogen Moderator</div><div>6.3 Derivation of the Isotropic Flux in a Moderator Other than Hydrogen A &gt; 1</div><div>6.4 Summary of Slowing Down Equations</div><div>6.5 References</div><div>6.6 Problems</div><div>Chapter Seven: Resonance Processing</div><div>7.0 Difficulties Presented by Resonance Cross Sections</div><div>7.1 What is Nuclear Resonance -- Compound Nucleus</div><div>7.1.1 Breit-Wigner Resonance Reaction Cross Sections</div><div>7.1.2 Resonance and Neutron Cross Section</div><div>7.2 Doppler Effect and Doppler Broadening of Resonance</div><div>7.3 Doppler Coefficient in Power Reactors<div>7.4 Infinite Resonance Integrals and Group Cross Section</div><div>7.4.1 The Flux Calculator Method</div><div>7.4.2 The Bondarenko Method - The Bondarenko Factor</div><div>7.4.3 The CENTRM Method</div><div>7.5 Infinite Resonance Integrals and Group Cross Sections</div><div>7.6 Dilution Cross Section - Dilution Factor</div><div>7.7 Resonance Effects</div><div>7.8 Homogeneous Narrow Resonance Approximation</div><div>7.9 Homogeneous Wide Resonance Approximation</div><div>7.10 Heterogeneous Narrow Resonance Approximation</div><div>7.11 Heterogeneous Wide Resonance Approximation</div><div>7.12 References</div><div>7.13 Problems</div><div>Chapter Eight: Heterogeneous Reactors and Wigner Seitz Cells</div><div>8.0 Homogeneous and Heterogeneous Reactors</div><div>8.1 Spectrum Calculation in Heterogeneous Reactors</div><div>8.2 Cross Section Self Shielding and Wigner-Seitz Cells</div><div>8.3 References</div><div>8.4 Problems</div><div>Chapter Nine: Thermal Spectra and Thermal Cross Sections</div><9.0 Coupling to Higher Energy Sources</div><div>9.1 Chemical Binding and Scattering Kernels</div><div>9.1.1 Scattering Materials</div><div>9.1.2 Thermal Cross Section Average</div><div>9.2 Derivation of the Maxwell-Boltzmann Spectrum</div><div>9.3 References</div><div>9.4 Problems</div><div>Chapter Ten: Perturbation Theory for Reactor Neutronics</div><div>10.0 Perturbation Theory</div><div>10.1 Zero Dimensional Methods<div>10.2 Spatial Method (1 Group)</div><div>10.3 References</div><div>10.4 Problems</div><div>Chapter Eleven: Reactor Kinetics and Point Kinetics</div><div>11.0 Time Dependent Diffusion Equation</div><div>11.1 Derivation of Exact Point Kinetics Equations (EPKE)</div><div>11.2 The Point Kinetics Equations</div><div>11.3 Dynamic versus Static Reactivity</div><div>11.4 Calculating the Time Dependent Shape Function</div><div>11.5 Point Kinetics Approximations</div><div>11.5.1 Level of Approximation to the Point Kinetics Equations</div><div>11.6 Adiabatic Approximation<div>11.7 Adiabatic Approximation with Pre-Computed Shape Functions</div><div>11.8 Quasi-Static Approximation</div><div>11.9 Zero Dimensional Reactors</div><div>11.10 References</div><div>11.11 Problems</div><div>Chapter Twelve: Reactor Dynamics</div><div>12.0 Background on Nuclear Reactor</div><div>12.1 Neutron Multiplication</div><div>12.2 Simple Feedbacks</div><div>12.3 Multiple Time Constant Feedbacks</div><div>12.4 Fuchs-Nordheim models</div><div>12.5 References</div><div>12.6 Problems</div><div>Chapter Thirteen: Reactor Stability</div><div>13.0 Frequency Response</div><div>13.1 Nyquist Plots</div><div>13.2 Non-Linear Stability</div><div>13.3 References</div><div>13.4 Problems</div><div>Chapter Fourteen: Numerical Modeling for Time Dependent Problems</div><div>14.0 Fast Breeder Reactor History and Status</div><div>14.1 The Concept of Stiffness</div><div>14.2 The Quasi-Static Method</div><div>14.3 Bethe-Tait Models</div><div>14.4 References</div><div>14.5 Problems<div>Chapter Fifteen: Fission Product Buildup and Decay</div><div>15.0 Background Introduction</div><div>15.1 Nuclear Fission and the Fission Process</div><div>15.2 Radioactivity and Decay of Fission Product</div><div>15.3 Poisons Produced by Fission</div><div>15.4 References</div><div>15.5 Problems</div><div>Chapter Sixteen: Fuel Burnup and Fuel Management</div><div>16.0 The World’s Energy Resources</div><div>16.1 Today’s Global Energy Market</div><div>16.2 Fuel Utilization and Fuel Burnup</div><div>16.3 Fuel Reprocessing</div><div>16.3.1 PUREX Process</div><div>16.3.2 Transuranium Elements</div><div>16.3.3 Vitrification</div><div>16.4 Fuel Management for Nuclear Reactors</div><div>16.5 Nuclear Fuel Cycle</div><div>16.6 Store and Transport High Burnup Fuel</div><div>16.7 Nuclear Reactors for Power Production</div><div>16.8 Future Nuclear Power Plants Systems</div><div>16.9 Next Generation of Nuclear Power Reactors for Power Production</div><div>16.10 References</div>16.11 Problems<div>Appendix A: Laplace Transforms</div><div>A-1 Definition of Laplace Transform</div><div>A-2 Basic Transforms</div><div>A-3 Fundamental Properties</div><div>A-4 Inversion by Complex Variable Residue Theorem</div><div>Appendix B: Transfer Functions and Bode Plots</div><div>B-1 Transfer Functions</div><div>B-2 Sample Transforms</div><div>B-3 Fourier Transforms</div><div>B-4 Transfer Functions</div><div>B-4 Feedback and Control</div><div>B-5 Graphical Representation (Bode and Nyquist Diagram)</div><div>B-6 Root Locus Construction Rules</div><div>B-7 References</div><div>INDEX</div></div></div>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Neutronic Analysis For Nuclear Reactor Systems